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ABSTRACT

A theory of ferromagnetism for general spin, approximately
valid through the entire temperature range, is given. At low
temperatures the magnetization agrees with the Dyson results,

having no term in T3

and having a term in T4 equal to that
fourd by Dyson in first Born approximation; terms arising
from the approximations of the theory first appear in order
T3(2S + 1)/,z'so that a spurious T3 term does appear for S = 1/2,
but for no other spin. Curle temperatures are within a few
percent of the Brown and Iuttinger estimates for spins greater
than unity, and agree within one percent of the Domb and

Sykes estimate of the rge spin limlt. The susceptibility at
high temperatures agrees with the Opechowskl expansion to

terms 1in 1/52. The quasi:particle energles are renormalized

by the energy at low temperature and by the magnetization

at higher temperature. The Green function 1is decoupled by a
physical criterion involving self-consistency of the decoupling
at all temperatures. The Green function method 1ls extended

to higher spin by a technlque of parametrizing the Green
function and expllcitely finding the functional dependence

on this parameter by soluticn of an auxiliary differential

equation.



Introduction

The Helsenberg model of a ferromagnet has been theoretically
analyzed by Dyson(l) by series expansion in powers of T, valid
at low temperatures, and by Opechowski(2> by series expansion
in'%, valid at very high temperatures. We here develop an
approximate theory which covers the entire temperature range,
including the particularly interesting Intermediate region
in the nelghborhood of the Curle temperature, and which agrees
satisfactorily with the rigorous restlts at both very low
and very high temperatures.

At low temperatures the magnetization has terms of order

B/é' S/é' 7/§ '
T , T s T which agree with the Dyson results, it properly
has no term in TB, and the term in ’I‘4 is equal to that found

by Dyson in first Born approximation, T72rms arising from the
3(28 + 1)

approximation in the theory first arise in order T
so that the case of § = 1/2 is an exception to the above
statements, having a spurious T5 term. Curie temperatures

are qulte close (&~ 3% for spin 2) to the values estimated by
Brown and Luttinger(B) by extrapolation of the high temperatures
series expansion, except for very small values of spin (again
the case of spin 1/2 1s particularly unsatisfactory). The

Curie temperatures agree within 1% with the estimate of Domb

and Sykes(u)for the high spin Timit. The susceptibility at

high temperatures for all spin values agrees with the Opechowski(e)



expansionvto terms in 1/52.

The quasi;particle energies are equivalent to simple
spin wave energies "renormalized" by a factor which 1is
proportional to the thermodynamic energy at low temperatures,
but which becomes proportional to the magnetization at higher
temperatures.

An heuristic interpretation of the renormalization of
quasi-particle energies has been given by Keffer and Loudon(s).
They point out that, at low temperatures where only long wave
length spin waves are excited, the local magnetization direction
varie s slowly through the crystal. Excitation of an additional
spin wave 1s analogous to excitation of a ripple relative to
this slowly varying local magnetization. The effective
exchange integral determining the energy of thils ripple 1is
influenced by the angle between neighboring spins in the
slowly varying background medium. This angle also determines
the thermodynamic energy; hence the renormalizatlon of the
spin wave energy by the thermodynamic energy. However at
higher temperatures the thermally excited excitations have
wave lengths comparable to the inter-spin distance, and
the correlation distance in thé background medium is as short,
or shorter, than the wave length of the particular excitation
being considered. In this region our results indicate that

the effective exchange integral is iInfluenced by the angle
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relative to the average magnetization; that is, the spln wave
energlies are renormallzed by the average magnetization.

The Helisenberg ferromagnet with spin 1/2 was analyzed by
Tyablikov<6) using the technique of double:fime temperature:

8)‘

dependent Green functions(T’ Extension of the theory to

higher spin has been achlieved recently by Tahir-Khell and
ter Haar(g). The present theory differs from those applice:

tlons of the Green function method in two respects. First,

the decoupling of the higher order Green functions is gulded

by a plausible physicali criterion, Second, the method of employing
Green functlons for general spin is simplified; the Green
funetion 1s parametrized and the functional dependence on

this parameter is found explicitely by solution of an

agxiliary differential equation. This single differential

equation replaces the 235 simultaneous Green function

equations in the method of Tahir-Khell and ter Haar(g).



2. The Green Function

The problem to be conslidered is the statistical

mechanics of the system described by the Hamiltonlan
> —_
N=sml? ST -7 Tg6)S,-S (1)
3 9 X i f

where US 1s the magnetic moment per ion; H is the applied
magnetic field (in the positive z-direction); %5 is the

spin operator (in units of f) for the ion at site g, and
'J(g:f) is the exchange integral between ions at sites g and f.
The exchange integral 1s assumed to be a function only of the
distance between lons; it 1s not restricted to nearest
neighbors or to only positive values, but it is assumed that

the ground state of the system 1s a ferromagnetically aligned

state.

The temperature-dependent retarded Green function

involving the two operators A and B, <<A(t); B>>, 1s defined

oy (8)

((Alé); BY = - H&){LA,B]) (2)

where A(t) 1s the Helsenberg operator at time t; & (t) 1s



unity for positive t and zero for negative t; square

brackets denote a commutator; and single angular brackets
denote an average with respect to the canonical density
matrix of the system at temperature T. The Fourier transform
of the Green function is a function of W (or of E = hw),

and is denoted by <<A;B>>E. It satisfies the equation of motion<8)

EQA;BY, = L (1A, B1) + [A(t))14]38>>g
(3)

If this equation can be solved for <<A;B>>E one then

extracts knowledge of the correlation function <BA(t)> from
the relation(s)

oQ i _ . \\Wt
amhe) = 2o ¢ AR, e —KABY Q‘ N
eso 1 Aaplw/kr) -

(4)

Equations (3) and (%) are the only equations required for
the applicatlion of the Green function method.



For reasons which will become evident subsequently we

consider the Green functlon
% - + o X
GL (a,0) =K Sg &5 € g >> (5)

where a 1is a parameter. The Fourler transform of this Green

function, Gg (g,1), satisfies the equation of motion (eqn. 3)

[G(ap)— Qi(a)g%)l‘*‘«[%(f)“} e S > 6

where «»- g e LR

ast _
e ={[sTe ] (7)

The commutator of SZ with the Hamiltonian, required

in the last term of equation (6), 1s easily computed, giving

2 rct . A (8)
EG. (3.0 7 ?S,: G (3.0) ‘?J‘a‘”«%%‘% %1€ S,»E

The remaining problem 1s to express the higher-order Green
function on the right in terms of two-particle Green functions,

so that equation (8) can be explicitely solved for Gg (g,1).
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3. A Decoupling Approximation

The #ssentlal approximation in the methods of Tyabllikov and of
Tahir-Kheli and ter Haar consists of lgnoring the fluctuations of

SZ, replacling this operator by its average value:

g
(s, 5 % p” SSOKE [ BY (Tyabhkov) (9)
This approximation results in the magnetization renormalization of
quasi-particle energies, 1n disagreement with the low-temperature
theory.

The decoupling approximation to be used here is most clearly

described for the special case of spin %w In that case we can

wrilte Sé in either of the following forms

by -~ -~

Sg =S ~ Sq 5; (s="%2) (10)
S +_- - F

Se ‘1<5333 - 34 5 ) (11"

or, multiplying the first of these equations by an arbitrary

parameter ¢ and the second by (1 ~« ) and adding,
t % o I+l = o+
- + =S - = s= 2 (12)
S3 xS+ TS, 33 T S5 5, ( )
- + o 1 _
The Green function <<53 Sa S-C R B> is reasonably de

coupled in the symmetric form¥*

£5;555 3B 577 <535, 0&S 1 BY +<5, 5 0KSy S BY (12)
and similarly for the Green function <{ Sa* Sa‘ 3;“) B .

Thus the identity (12) leads to

*The remalining "contraction”, <3; 5; ><< Se ) B>> vanishes

because the operator S; Sg is not diagonal in the total z-com-

ponent c¢f spin,



§

<5 sps>> — (AT BY - xS SOLST By Gy

Ifis chosen as unity the result corresponds to decoupling on the
basis of identity (10);% = o corresponds to decoupling on the basis
of identity (11); x= -1 corresponds to decoupling on the basis
of the identity sg -8+ sg Sg. Thus we are faced with the
possibility of obtaining a correction to the Tyabllkov decoupling
with either a positive or negative sign, or no correction at all,
or any lntermediate value, depending on the choice of &. Clearly
a physical criterion is required at this point.

The operator S™ S* in equation (10) represents the deviation
of S% from +S. It is thls operator S"S+ which 1s treated approxi-
mately when decoupling on the basis of equation (10). It therefore
seems reasonable to use equation (10) when the deviation from
s? =S 1is small; that is,when <Sz> A%

Similarly, the operator % (S+s— - S_S+) in equation (11)
represents the deviation of s? from zero, and 1t therefore is

reasonable to use equation (11) as the basis of decoupling when

{sS* 20
Both of the above observations are contained in the choice
?
o = SV (s=72) (15)
S

for then equation (12) becomes

1 S+<$>
S =S ¢ [S il ;3 25 5° 3] (o)

The operator 1n brackets, which is to be decoupled, represents the
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deviation of S° from.(S%)and should be self-consistently small in
all temperature regions.
Inserting the above value ofeofinto the decoupling equation (19)

gives

(5538 Ty - SG2(GSIKTIBY 6

This 1s the basic decoupling approximation for spin %3 we now
generallize it for higher spin.

The analogue of equation (10), for general spin, is
z R\2 =+
= S(S+) — (S -
S? S( ) ( 3) SQ 53 (18)
whereas equation (11) remains true. Decoupling as before, and

neglecting* the fluctuations of (Sz)z, we find in this case as well

QS5 BY 7 SPLBY LYK 58D o)
where Xis the fractional contribution of the identity (18), and
(1-¢) is the contribution of the identity (11), to this result.
Unfortunately sés; is no longer the only operator treated ap-
proximately in decoupling equation (18), and the interpretation
of the decoupled operator as belng the deviation from s = +8
i1s no longer true. Hence the cholice ofwils no longer quite so

evident. However,

*The Green functilon <<(SI) S B>> also can be symmetrically
decoupled, but the results are of the same form as those obtained

by the slimpler procedure above.
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we determine 1t by the following requlrements:
a) For S = % » X should reduce to our previous result,or to
& = {s%p/s.
b) For (Sz> = 0, & should vanish. This requirements follows
from the fact that identity (11) retains its interpretation
for arbitrary S.
¢) For {S®) ™ S we expect that S® should have the form
s?~= g - n, where n is a deviation which is of order unity
rather than of order S.
Requirement c) implies that M(SS S:) should be of order unity,
rather than of order S, at low temperatures. Now E%—(Sé Sé)»is the
spin deviation in lowest Order*ﬁsimilarly'<sé S?)»will be of order

2S if f and g are closely coupled. Hence we take

o LS (20)
2S S

and it 1s clear that this satisfies all of the physical requirements
above. Equations (19) and (20) characterize the basic decoupling

approximation of the theory.

—_—

* The appearance of 23 here corresponds to the identificatién ofnr
S+ and 37 respectively asq§§‘a+ and Y25 a~ in the leading terms
both of the Dyson and the Holsteln-Primakot'f transt'ormations. Here
a+ and a  are destruction and creation operators of elementary

boson-type exclitations,



"

4. Solution of the Green Functlon Equation

Inserting the decoupling approximation into the equation of

motion (8) gives

a «
* - - - ( )‘? "
EG:(3>“ = *B'U(rﬂ s HG (30 2(9;% Ty c)[qe(gm G (9:#)]

¥ —t a .
+<%>4ZJ'(3-¥>[<83 S‘>GE(3,1>~<5$53 )QE((,)?)] Q1)

These equations are a set of coupled equations for various
pairs of sites (g, 1), (f, L). Translational 1lnvariance dictates

consideration of the spatlal Fourier transforms

- ~1(2-4)+ K
G =3 e TG0 (22)
34
STC Y
TRy =X €T T |
w (23)
[(a-A) Kk 45: +
~i0a-4): ~
ZP(E’)Q)EZ S 3 <@ S(,Sg>
3 (24)

- - o -
Here ge+k denotes the vector product Ré k, where Rg is the position

vector of the g-site. Equation (21) then implies

EQU(R) = 2 LHG, B 2 SH[TR) - TG, (R +
T

T
+<_§i>z [J(i‘q-nk"-m]19(?'.0)C§(E> (e2)
S v
or < o (>
Gs(k) ) 2T (E-EW)) (20)
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where

uy S8V - y - -
E(R) =mh +2¢s*)[I0-T60) * z?_ Zr [J(k’)J(ng)] 3 (K,0) (27)
KI

—
The correlation function which can be obtained from G% (k) by
-
equation (4) is the quantity & (k,a), defined in equation (24). In-
serting equation (20) in (4), and taking t = o, we thereby obtain
HH (a)

Z’fs“"&) = eE(?)/,h-r‘I (28)

Equation (28), together with eq. (27) defining E(E), equation
(24) definingaﬁ(;;a), and equation (7) definingiQi(a), is the basic
equation of the theory. It must, however, be augmented by an ex-
plicit relationship betweenqlandfﬁ, and it is thils step which
complicates the problem for spin:>%u

The problem which distingulshes the simple case of spin %-from
the more complicated case of higher spin becomes evident 1if we
particularlze our solution temporarily to S = %u We also take
a = o, and we note from eqs.(24) and (10) that

—

(o) = = (Ko) =¢S5 57N = 4 _¢<? .
2150\) N%ZP <3 a> 3 <S> )(S /1\ (29)

Thus 4 (0) is simply related to the magnetization. N¥(o) is the

total number of spin reversals in the crystal, and¥(k,o) is the
-

occupation number of the basic exclitation of wave vector K

Similarly, from equation (7)

Bitey = 245%) (30)
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&— Hence equations (28) and (30) determinezﬁ(;,o) as a function
ot (SZ> , and equation (29) provides a requirement otf selt'-consistency
which determines {s%) .
For higher spin values equation (29) is replaced by
BT F LI =¢5,57 = Stsa) =N ={s%)
(31)
This introduces the new quantity <(SZ )a> , Which 1s not determined
by equation (29). Tahir-Khell and ter Haar(9)therefore introduce
the Green function (S;;(g)\s:»to evaluate thls quantity, but its
solutilon in‘croduces/\(sz)5 >. By introducing 2S5 such Green functions,

and by recalling that (s%)°5+!

is related by an ldentivy to lower
powers of Sz, they are thereby able to obtain a solution. That
method gets laborlous very quickly, but they have given explicit
solutions to S = 2.

By exploiting the functional dependence of\@(a) andipon the
parameter a, which was inserted in equation (») for just this

purpose, both&)andlﬁcan be explicitly related to <Sz> for arbitrary

spin, 1n close analogy with the case of Spin-%.



5. Relatlonship offeito (SZ>

Calculation of the commutator defining ¥ (a) (eq. (7)) is

facilitated by the ildentity
AR S\ B R_\N e"} +
[S56)] = {(s-)"= ("} (32)
which 1s easily corroborated for n = 1, 2 and extended to higher n

by mathematical induction. It follows that
* ¥
<+ ) ~ 0 as +
[t e | =(e™-nNe s

and thence

L —a S!‘ -
O1 @y = 242 5%y +(E-ne’ st

(33)

(5%)

Expressing sts™ in terms of g° by the identity (18),

- - \ -a r
Bl =S5t (E)ESY +E W (ETSH ~EUNET (T

Finally, 1t is convenient to introduce the quantity

N = e (36)

and the notation

D= a—j— (31)
Then the two quantities of interest can be written
By = S(SHYE-D N + (€D DN~ @) DL (38)
and \
Gtay = (e gsYy = st -pN -DL o)
39

The relationship (28) betweenzé(iaa) and B(a) can be recast

in a more convenient form as well,by defining

\

-’ —
by = CRy (40)
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whence

28(K,0) = PK) 1=

(41)
The self-consistency requirement on the Green function is now

contained in the condition

G = P o (52)

where
- o
fp =N Zcb(k) (43)

This condition should determinet(a), and thence<<Sz>', which 1s
Just %ﬂﬁ(o), as we see from equation (25). It i1s more convenlent
to determine f)(a), and thence to find¥i(a) by equation (38). In
fact inserting equations (38) and (39) into (42) gives a differ-
ential equation ford)(a).

“ 0+d)e” +§

DA) + (5D
This differential equation is the analogue of the set of 23 coupled

of
equations, Tahir-Khell and ter Haar.

DN =-S(s+)L =0 (44)

To completely determine the solution we require two boundary

conditions. From the definition (36) we observe

L@ =i (1)
The second condition is provided by the operator ldentity
S
i w—
m (s “P) =0 (46)
P=-S

Taking the average of this equation it can be written in the form

s
er (D-p) (L= = o (o) = 0 (47)
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In the Appendix it 1s shown that the solutlion of the differential
equation (44) satisfying the boundary conditions (45) and (47) is

Q - QISH e—Sa. —(H@m' e(s+u)a. o)
(a) = I@\SH _('4_@)15“][(”@)@«_@]

from which s® ori(a) can be found by differentiation.




6. The Formal Solution

For convenlence and clarity we recapitulate the final form of
the equations, preparatory to analyzing their low-temperature and
high temperature behavior, Curie temperature, etc.

Given a spin magnitude S, a temperature T, a magnetic field H,

and an exchange interaction with Fourier components J(K'. the

quasi-boson occupation number ¢ (k' is

apu—

- — o -
PR BRI/ kT - (49)

where
E(<c)=mH +z<sz>{[31o)—3(i‘)] +%§ ; [ Tk —J-(E’t:)] ¢(;. )}(50)

This 1s an implicit equation fort¢(i5, involving the unknown quantity
{s?>. However {s“)is glven in terms of

B =% P (51)

(S-@)(l+§)z$+'+(s+u+@) @25“
(l+§)z$“ _ @LS-H (52)

Thus equations (49) - (50) constitute a set of coupled equations

by

{s¥) Do) =

which must be solved self-consistently for (Sz}.
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7. Nearest Nelghbor Interaction

For simple lattices wilth nearest nelghbor interaction the for-

malism simplifies markedly. 1In thls case the exchange J(k?) is
-
(K
(R)=T 2L e
J % (53)
—
where goes over the nearest neighbors of a representative lon;

we assume all magnetic ions are crystalographically equlvalent. Con-

sider the sum

N =L [ T8 - TRk ] Pk
K'

(54)
-
which appears in equation (50) for E(k). Then
\.(‘?‘r Q‘k"? -—
‘).(: IZ(\-Q )Z@ Cb(K') (55)
H 3
The sum over K’ is clearly independent of 8, by symmetry, so
- [d ra) -
that it can be replaced by 3\ ‘Z P W(L K8 ) k)
] K
where ra, is the number of nearest neighbors. We thus obtain
ol - - -
K = Tl Iro~T12 TR puiér) (56)
k}

where J(o) = (} J 1is the k = o Fourler component of the exchange
interaction. This equatlion was first pointed out by Michelene

(10) - -
Bloch. The sum & Jtk’) @(x’) is a function only of the temperature,

<Sz> , and H (and, of course, of J and the lattice structure).

\ a, -y -
_NJM‘Z‘T(K)@N) = £(T, ¢sh,H) (57)
and

E(K)>m H +Z<S‘>[T/°>'T“?>]['+<‘§'?ﬂ (58)
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Thus, for simple lattices (including simple cubic, body-centered
cubic, and face-centered cubic lattices in particular) and for

nearest neighbor interaction the slmple spin wave energles are re-
normalized by a factor depending only on the temperature (for zero
field), independent of the wave vector—lz Equations (57) and (58),
together with the definition of @(-12) in terms of E(E), constitute

a palr of coupled equations for the renormalization function f. For
these lattices and nearest neilghbor interaction the complete solution
would be obtalned explicitly by solving egns. (57) and (58) for f,
thereby obtaining ¢(1?) or@in terms of T, (SZ> and H. Then eliminating
§ between this equation and equation (52) would give {s%) as a function
of T and H.
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8. The Low Temperature Reglon

—’.\‘
The summation (or integral) over R' involved in the calculation

of@ for H = o occurs in simple spin wave theory and has been carried

1)

out by Dyson( and others by standard series expanslon procedures

appropriate to low temperatures. Thus, 1if

E(¥) = 2SR LI -3(«))

(59)
and 1f a reduced temperature 1s defined by
- -————————-—3/‘?7
T HraTSvV (60)
then(l)
T (YA T ™\Vh
§3(F @ e R e
Similarly

l Y2 4
;5 2 T00 i) = 3(1)({_) TURE) T\’H@ S)Trw 3(1)(1‘.) . (62)

The constants V¥ and ¢ depend upon the lattice structure and are

defined by

V=l w=334, for sinple cubic (63)

_ 2
V=3 R w=28)/259 Sor boly-centered cubic 4
> , (64)

V= 2"3 R ‘U:’s-/)é Sor che~cevﬁer<¢1 cub,c (65)
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To apply these results to our case we take (compare eqns. (59)

and (58))

2 2
R=2[ 10 &2 4]

(66)

The remaining equation is eq. (52) for <Sz)in terms of@;
expanding it in powers of@(which is small at low temperature),

we find
{sH =S~ @ } (ZS+.)§IS+: _(234‘)1@2541, s 0(8 23-03)

To disentangle the coupled equations we flrst substitute

(67)

equation {(66) for R into equation (62), solving for f as a series
in T,

£=3563) (399 #W’VS({) (Zw) +(z«-,wv5(1)( )
2 S Q
-%S(%) @;‘f‘ng(%)ﬁ({\é‘;;;fum (&))

Inserting this series into equation (61) for@we find

$h X T VA
B=3@(S) T mE(E) e d(E) e
-3 1(3) 5_1t3 ‘}‘771‘3.(5)“5:)'93_ T
zS SN 2 T 2l (2)3
Finally, inserting this equation into equation (67) we find

(s =5 -33) T 2w T - TV @)

3 T3+ 3S+3/z (70)
- 35 TSR Thar (T T
3$+$/1

NETTO) %— g(lh.)S(S/l)T
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Neglecting, for the moment, the terms\nbgs&*j/z, oS+ 5/2
we see that the coefficlents of 03/2, m5/2, %7/2 are in exact
agreement with the Dyson result. The term in t3 is absent, as

required by Dyson. The term involving c” is given by Dyson(l)as

3 3 s |
—S TR QT (71)
where Q, the ratio the ratlo of this term to our t4 term, is
=
Q=1+3[6s5-17 +33 (72)
with
G=10,16, 24 for S.C,, B, Fec, (73}
o =.82,.39,.39 for S.¢,Rce., Fec,
(74)

Thus our 04 term corresponds to the leading term (Q = 1) of the
Dyson result; that 1s, to the result which Dyson finds in the first

Born approximation.
The terms OBS + 3/2, QBS +5/2

s...1n equation (70) seem to

be spuricus results of the Green function approximation. For S = 1/2

they gave incorrect contributions to the %3 and %4 terms. For spin

unity the first spurious contribution appears 1n the %9/2 term, and

for spin 3/2 it appears first in the 20 term; thereafter it moves

rapidly tc higher order in ®. Consequently the spurilous terms are

of consequence 1in the low temperature region only for spin L/Z2.
Finally, 1t is of interest to substltute equation (70) into

equations (69), (68), and (bb), to obtain.@, f and the renormali-

zatlon factor R explicitly as series in ®. We thus find
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@ :S‘S( XA —-'lTVS(S _71‘ oV g(f)rﬁz L F (75)

v TT -

2.2 Y/
£ =3t v T o - BT VISR T (o)

S TSNP T

and
‘;S(%YL‘ R TV >s<£> Thae ¥
35+5R

2544 4
+ g__é_ta_ S(Jmtsasu)/z. 3(25 R ITPS(SIOS(’/z)Z\
It will be recalled that R is the ”renormaiization factor'; the

ratio of the actual quasi-particle energies to the simple spin
wave energies. At low temperatures the leading temperature depend-
ence of R arises in the @5/2 term. Hence the spin wave energies
are renormalized by a factor proportional to the thermodynamic

energy rather than the magnetization in this temperature region.
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9. The Curlie Temperatures, and the High Temperature Between

Just below the Curie temperature (assuming H = o) the average
magnetization <S*‘/\ 1s small, and the mean number of excited quasi-
particles 1s large. In fact, expanding equation (52) in powers of
i_l we find

B < SEIF 4+ 0(F )
(s 3 ¢ 2 (18)

Furthermore, since E(Tz) is proportional to<Sz> the exponential in

the Bose distribution can be expanded, glving
- - Z<Sz> - (S! -l
52 { 5 (v -] [1+ 22 ¢1] (79)
13

Multiplying equation (79) by <S®), and replacing {S*) @ by
S(sw)/A (from equation 78) we then have, in the limit {(s>=o0 |,

S(s+y _ KT

where F(-1) denotes the summation

. J (o)
F(-) =} ) Tio) = T(K) (81)

This summation has been evaluated by Watson; 1t has the values

(80)

F-0) =1.51638(5¢)1.39320(B.CC)3 134446 (FC.c) (52)

Equation (80) determines the Curlie temperature. However we must
evaluate the limiting value of the quantity <S§>-{‘ which appears in
that equation. From equation (57) defining f, again expanding the
Bose factor,

2 3 -
<Ss'_‘2¥ i <NSS>I/\ 2 3061 ¥ [am-r] 11 FY (e

or

S22 = FCOL gy

25*J0 (B4)
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L)
Eliminating‘%%?( between this equation and equation (80) we finally

find the equation determining the Curile temperature.
RT, 27 (S+1)
= 8 Z(HSH)FH) -(sm] (85)

In Table I we give the values of &I /ras estimated by Brown and

T 9 F%)

Luttinger(a)by extrapolation of the series expansion for the sus-
ceptibllity in powers of 1/T. We also 1llst the values obtained by
Tahir;Kheli and ter Haar(9), and the values calculated from equation
(85). It will pe noted that our values are higher than those of
Brown and Luttinger, whereas those of Tahir-Kheli and ter Haar are
lower. For spin 2 the deviatlon of our results from the Brown and
Luttinger values is of the order of 3%, and the agreement improves
with increasing spin. 1In fact Domb and Sykes have recently pub-
lisheém%n estimate of the limiting value E#%%%;g‘ for large S, for
the face centered cubic lattice. Thils estimate was obtained by a
palinstaking examination of the systematics of the extrapolation of
high temperature series. They obtain the value of 6.384%, with
which our value of 6.45 agrees within 1%.

2
S = 1 only, for the face-centered cubic lattice; thelr values are

™)
Domb and Sykes also glve estimates o?&Tc/J for S = L and

4.07 and 11.95 respectively. These are lower than the Brown and
Luttinger results, and further aggravate the dlsparity between our
values and the estimated values for these small spins. It is
apparent, both from the Curie temperatuees and from the low tempera-
ture results, that our approximations are more reliable for large
spin, being particularly bad for spin %w Fortunately most cases of

1, for which

practical interest are associated with spins greater than =

the results appear to be quite reliable.
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TABLE I

Curle Temperatures for Cublic Lattlces, Nearest Nelghbor Interaction

Simple Cubilc .Body Centered Cubic . Face Centered Cublc
S| it Cmmer | Duve. o Hear . .| Dute, ¢ dear
o 1.9 2.0 2.7 2.39 2.9 3.7 4.2 4.5 5.6
1 5.4 5.3 6.5 7.82 T.7 9.1 12.7 11.9 13.9
% 10.6 9.4 11.2 15.42 14,4 16.6 2k, 7 22,3 25.5
2 17.5 15.8 17.9 25.17 23.0 26,2 4o.0  35.7 4o.1
2| 25.8 23.1 26.8 37.10  33.5  37.9 58.7  52.1 58.3
3 35.7 31.6  36.4 51.19 45.9 51.6 80.9  T1.4 79.5

For the face-centered cubic Domb and Sykes(u)give

6.38 (Domb and Sykes)

Lim (4E?¢ B
5=\ as(s+1)

5.95 (Tahir-Kheli and ter Haar)

il

6.45 (Callen)
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It should, perhaps, be noted that the Curle temperatures are
quite sensitive to the decoupling parameter &, of equation (20).
If the chosen value ofo/were to be multiplied by (<Sl>/$)e s
where € is any p&sitive constant no matter how small, the Curie
temperatures would become identical to those obtalned by Tahir-
Khell and ter Haar, whereas the low temperatures and the high
temperature behavior of the theory would remain unaltered.

Finally, the high temperature expansion of the susceptibllity X
i3 of interest. We assume <Sz)sma11, and maintaln only terms pro-
portional to the applied magnetic field. Equation (78) remains
valld, equation (79) contains the additional Zeeman term, and the
analogue of equation (80) becomes

S(s+) _ AT o 2% - (s
T % e NE{H}F [T/o)—I(k)]['+ Q]} (86)

Similarly the analogue of equation (83) is

S kT L
2 < BAT L LT s i B e TRID FY o

It is convenlent to denote

<S>
[H £] = (88)
and to define a quantity %,, by
s? S
Lz Z /“< > s ASCHD (), (89)

H>o 3’&7_
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Then multiplying equation (86) by [ + % J(o)X]
and equation (87) by —% 3 X
and adding, we find

T 4SS+ + AT e =
X 3S X 23J0 %, 0 (90)

Furthermore, expanding the summand in equation (86) we find

k3
)= ) 1= Z‘T“’Xx +'§§3‘X11‘ 424 (91)

K (
In this summatlon we have employed the 1dentit1esi)

- = = +)
Foo=1 | Fey= 3;&— (92)

where

Finy= I_N KZ (I(o)~1(k))

J o) (93)

The quantity X can now be eliminated between equations (90) and (91),

enabling 7¢|to be evaluated in a series in 1/T. In this way we find
=M 5(5“)[ o 4 )- 232 (L ) + ] 4

where TN is the Curlie temperature of the molecular field theory:

T = %
AT, = %3 3TS(sH) (95)
The two leading terms in thils expansion are in agreement with the

values found(B)by a rigorous expansion of the susceptibility in

powers of 1/T.
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Appendix
It 1s easlly corroborated that the solution of the differentlal

equation (44), satisfying the boundary conditions (46) and (47) is

W=3,%) o0 6 (S+), 0) = W(st,a) olsw(-5,0)

-/2(03 (A.1)
'+§ 00, Gu(S+1,0) = 0 W(=s,0)
where
C?lx
b(x,a) =
’ (+3)e*- B (A.2)
The evaluation of the derlvatives oOSw(;() [ i1s then
required to reduce this result to equation (48). Consider
T o) =S
o), (X = - (A.3)
S )Q) <3 (D P) Q+§)e&—§
S X ‘
= T (& - 4 (A.4)
s ("3 dAa 10) U+?)g _@
where o
t= € (A.5)
Expandling in powers of y, and noting that "a :l—‘a %n = n‘&n
we find
\ = 1+P ;Y '”\
o (x,a) = ~ =~ <__) " (n- (A.6)
s ® ; ¢ K, r-s ™

We now take a = o (or y = 1), let x = S + 1, and change variables from

ntom=n-S and fromp to r = S - p., Then

(m +z$+l)/ 1+ P\
o, wls+,0) = Z (T) (A7)
Similarly, taking a = o, letting X = -§ and changing variables from

ntom=n-5 -1, and fromp tor =8 +1 - p we find
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s
(1+ ) (m+15$0/ 1+ \m
DOS ‘\)(‘S) O) = = 55*7_ - ( q ) (A‘8)

From equations (A.7) and (A.8) we note that the ratio of the re-

levant quantities 1is

254/
D, w(-3,0) | +

> - (1+9) (A.9)
Qg w(s+1,0) @ 254

Finally inserting this ratio into equation (A.1) gives equation (48).



(1)
(2)
(3)
(%)
(5)
(6)
(7)

(8)

(9)
(10)
(11)

S.
N.

Bibliography

. J. Dyson, Phys. Rev. 102, 1217 and 1230, (1956)

Opechowskl, Physica 4, 181 (1937); 6, 1112 (1938)

A, Brown and J. M. Iuttinger, Phys. Rev. 100, 685 (1955)

Domb and M, F. Sykes, Phys. Rev. 128, 168 (1962)
Keffer and R. Loudon, J. Appl. Phys. 32, 25 (1961)
V. Tyabltkov, Ukrain., Mat. Zhur. 11, 287 (1959)
N. Bogolyubov and S. V. Tyablikov, Doklady Akad.

Nauk S<+S.S.R. 126, 63 (1959) [translation: Soviet
Phys. - Doklady ¥, 604 (1959)

A convenient review of Green functions and of Tyablikov's
application of them to ferromagnetism, is given by D. N.—Zubarev,
Usp., Fiz. Nauk 71, 71 (1960) [translation: Soviet Phys. - '
Uspekhi 3, 320 TI960)]

R.
M.

G.

Tahir-Khell and D. ter Haar, Phys. Rev. 127, 88 (1962)
Bloch, Phys. Rev. Letters 9, 286 (1962)

N. Watson, Quart. J. Math. 10, 266 (1939). See also
Tikson, J. Research Nat'l Bur. Standards 50, 177 (1953)



